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Let ij be the orders of Cij . In this work the previous result of the author [1] is strengthen also there
is considered new class of wreathcyclic groups = (let G ∈ =) which constructed by formula:

G = (
n0

o
j0=0

Ckj0 )× (
n1

o
j1=0

Ckj1 )× . . .× (
nl

o
jl=0

Ckjl ), 1 ≤ kji <∞, ni <∞.

Theorem 1. If orders of cyclic groups Cni , Cnj is mutually coprime i 6= j then the group G =
Ci1 o Ci2 o ... o Cim admits two generators β0, β1.

The subtree of X∗ induced by the set of vertices ∪ki=0X
i is denoted by X [k].

Figure 1.1. Directed automorhism

Figure 1.2. Rooted automorhism

We construct the generators of
n
o

j=0
Cij as a rooted automorphism β0 in Figure 2 and a directed β1

along a path l in Figure 1.1 on a rooted labeled truncated tree X [k].
Let l = x1x2x3...xk be an finite ray in X [k].

Definition 2. We say that the automorphism g of X is directed along l and we call l the spine of g if
all vertex permutations along the ray l and all vertex permutations corresponding to vertices whose
distance to the ray l is at least 2 are trivial (Figure 1).
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Definition 3. An automorphism of X is rooted if all of its vertex permutations that correspond to
non-empty words are trivial.

Corollary 4. A center of the group Znφ(Z)n ' (Z, X) o Z consists of normal closure of diagonal of
Zn, trivial an element, and kernel of action by conjugation that is nZ. Other words

Z(H) = 〈 1; h, h, ..., h︸ ︷︷ ︸
n

), e, (nZ, X) o E〉 ' nZ× Z,

where h, g ∈ Z, Z(H) ' nZ× Z.

Corollary 5. A center of a group of form Znφ(B)n ' (Z, X) o B generates by normal closure of:
diagonal of Bn, trivial an element, and nZ o

X
E.

In our case the Morse function [2] f on M that has the following properties:

(1) f is constant on the bound M ,
(2) it has 2 points of maximum at a saddle point,
(3) at these 2 points of maximum, the values of the function are equal; in every critical point of f

the germ of f is C∞ equivalent to some homogeneous polynomial of 2 real variables without
multiple factors.

Consider a group H of automorphisms of M which are induced by the action of diffeomorphisms h
of a group D(M) such that preserving the Mebius function f , that is, such h are from the stabilizer
S (f)/D(M). Generators of their stabilizers by right action by diffeomorphisms π0S(f |Xi,∂Xi) are τi.

The first generator ρ of cyclic group Z realizes shift of Mebius band and second τ realize rotation
of domains Xi of simple connectedness on Mebius band when passing through the twisting point of
Mebius band (M).

Proposition 6. The group H ' Zn(Z)n = 〈ρ, τ〉 with defined above homomorphism in AutZn has
two generators and non trivial relations

ρnτρ−n = τ−1, ρiτρ−iρjτρ−j = ρjτρ−jρiτρ−i, 0 < i, j < n.

Also this group admits another presentation in generators and relations〈
ρ, τ1, ..., τn

∣∣ρτi( mod n)ρ
−1 = τi+1( mod n) , τiτj = τjτi, i, j ≤ n

〉
. (1)

Proposition 7. The commutator of Sylow 2-subgroup (Syl2A2k)′ has order 22
k−k−2.

Proposition 8. The second commutator of Sylow 2-subgroup (Syl2A2k) has the order 22
k−3k+1.

Corollary 9. The Frattini factor of (Syl2A2k)′ is isomorphic to elementary abelian subgroup (C2)
2k−3.

Any minimal generator set of (Syl2A2k)′. has 2k − 3 generators.

Example 10. The minimal generating set of Syl′2(A8) consists of 3 generators: (1, 3)(2, 4)(5, 7)(6, 8),
(1, 2)(3, 4), (1, 3)(2, 4)(5, 8)(6, 7). The commutator Syl′2(A8) ' C3

2 that is an elementary abelian 2-
group of order 8. Minimal generating set of Syl′2(A16) consist of 5 (that is 2 · 4− 3) generators:
(1, 4, 2, 3)(5, 6)(9, 12)(10, 11), (1, 4)(2, 3)(5, 8)(6, 7), (1, 2)(5, 6),
(1, 7, 3, 5)(2, 8, 4, 6)(9, 14, 12, 16)(10, 13, 11, 15), (1, 7)(2, 8)(3, 6)(4, 5)(9, 16, 10, 15)×
× (11, 14, 12, 13).
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